<u>Current Needs in Reactor Physics:</u> For The Nuclear <u>Power Industry</u>

Kord Smith

Studsvik Scandpower,Inc. 504 Shoup Avenue, Suite 201 Idaho Falls, Idaho 83402

kord@soa.com

Presentation Caveats

- This talk represents my personal views on reactor physics needs not a detailed technical analysis of the area
- My experience is highly biased towards needs of the commercial LWR industry
- Apologies to those with CANDUs, RMBKs, etc.

What are the nuclear power industry current needs in reactor physics

- New plant requirements (or new plants themselves) to justify the need for improved reactor physics methods
- Utility management who understands the importance of reactor physics in plant operations
- Reactor physicists who understand the importance of plant operations to the nuclear power utility
- Resources (i.e., time and \$) for reactor physicists to devote to reactor-physics-related tasks

Why new plant requirements?

- 5+ years needed for development of new methods or codes
- 3+ years needed for licensing of new codes
- 5+ years needed for new products to penetrate the market
- 5+ year "moratorium" on new methods prior to plant closure
 - > 18 years of subsequent plant operation may be required to justify starting the development of significant new reactor physics methods or codes

Why are reactor physics projects needed?

- Routine reactor physics analyses are now performed with personnel using "black box" codes/tools which have been very successful in:
 - Improving the accuracy and human efficiency of reactor physics analysis
 - Removing much of the need for detailed understanding of reactor physics
 - Isolating reactor physicists from much of the fundamental reactor physics
 - Reducing the need for reactor physicists to learn how to "approximate"
- Aging of existing reactor physicists results in a continuous loss of practical reactor physics knowledge
 - How many existing reactor physicists are actually doing reactor physics?
 - How many reactor physicists have participated in the application of new methods for analyzing reactors that have actually been built?
- Significant new projects (followed to completion) enhance the learning experience and expand reactor physics understanding

Why do reactor physicists need to understand the "Big Picture"?

- Reactor physics challenges will not be solved by the introduction or perfection of any single tool:
 - Complete reactor analysis requires:
 - 10,000s of steady-state 3-D core calculations
 - 100s of transient core calculations
 - 1000s of operational support calculations
 - Continuous real-time core monitoring calculations
 - Reactor design/construction is largely determined by economics (i.e., money makes the real decisions)
 - Reactor operations are often limited by uncertainties (e.g. system generation requirements, economic market, mechanical failures, etc.)
 - Accuracy of methods will ultimately be limited by: fabrication tolerances,
 operational unknowns, stochastic variations, etc.

Why do reactor physicists need to understand other disciplines?

- Reactor physics requires better cooperation with other disciplines because fuel/reactor performance is limited by knowledge of:
 - material changes with irradiation:(e.g., pin and channel growth and bowing)
 - chemistry interactions with fuel and components:
 (e.g., crud deposition, oxidation, hydriding, etc.)
 - detailed thermal hydraulic conditions:
 (e.g., fuel spacer effects, local dryout conditions, DNBR margin, etc.)
 - gross thermal hydraulic conditions:
 (e.g., plenum mixing, bypass flows, pressure drops, etc.)
- Broad knowledge of inter-related disciplines will be required to permit reactor physics gains to be fully realized
- Other disciplines are probably not going to be learning reactor physics!

Nuclear Data Needs

- Physicists who understand existing nuclear data and nuclear models
- Better testing of new data libraries:
 - JEF3, ENDF-B/6, JENDL3, etc.
- Improved accuracy of nuclear data:
 - Better actinide data for ultra high burnup applications
 - Better actinide data for actinide burning through re-cycling
 - Better fission product data (still many errors and missing data)
 - Better data to support alternate fuel cycles
 - More complete covariance data for understanding uncertainties
 - More accurate delayed neutron data
- Better code support and quality control of data processing tools (e.g., NJOY)

Critical Experiment Needs

- Commitments to keep some critical facilities operating
- Training of more young people in experimental techniques
- Focus on the tough critical experiments:
 - Local distributions of fission and absorption
 - Fuel depletion effects and fission product poisoning
 - Delayed neutrons yields
 - Spent fuel (sub) criticality
- BOL critical experiments are probably not worth their cost given the present status of analytical methods

Lattice Physics Methods

- 2-D multi-group transport is largely a solved problem
 - Exact heterogeneous geometry is the industry standard
 - Multiple radial/azimuthal depletion rings within a pin are required
 - Extensive nuclide tracking is a necessity: >300 isotopes
- Resonance model are the weak link of modern lattice physics codes and need improvement

Monte Carlo Lattice Methods?

- Requirements:
 - 1000's of 2-D calculations required per fuel bundle
 - Many tally regions for radial and azimuthal pin depletion
 - Lots of isotopes for decay heat and radiological sources
- When will they be practical?
 - Not real soon, but they are coming!

Current 3-D nodal methods

- Requirements: ~1% accuracy on pin-wise powers
 - Numerous variants of advanced nodal methods
 - Intra-nodal space and spectrum dependencies
 - Multi-group, microscopic or macroscopic depletion
 - Accurate pin power reconstruction

Current limitations of nodal methods

- Deficiencies in current LWR nodal methods:
 - Inaccuracy causes big by large spectrum mismatches between fuel
 - Inability to treat accurately intra-assembly flux gradient effects (re-homogenization)
 - Inaccuracy caused by BWR blade history effects on pin powers
 - Inability to accurately predict thermal-hydraulic distributions (coolant densities and fuel temperatures)

3-D Monte Carlo analysis?

- Overcome difficulties with source convergence for typical LWR dominance ratios (> 0.995)
- Drastic increase in number of histories to achieve 1% statistics on local pin powers
- Drastic increase in tally efficiencies for very large problems
- Overcome massive data storage (100,000 pins x 500 axial levels x 300 isotopes = 60 Giga-bytes per depletion point)
- Treat 1000s of calculations per cycle of operation
- Introduction of thermal-hydraulic feedback required for accuracy
- Full-core Monte Carlo not realistically achievable for production analysis (at least for LWRs) in next 20 years

New 3-D pin-cell based methods?

- Modern computers make possible very large computational problems
- 3-D pin-by-pin computations are possible
- Difficulties:
 - Need for transport-to-diffusion corrections
 - Need for homogenization approximations (at pin-cell)
 - Pin-cell cross section approximations (environmental effects)
 - Large data storage requirements (100,000 pins x 500 axial levels x 300 isotopes = 60 Giga-bytes per depletion point)
 - Isotopic depletions become dominant computational burden

New 2-D heterogeneous/3-D methods

- Accurate and efficient axial transport models required
- Brute force data storage requirements (100,000 pins x 10 radial rings x 100 axial levels x 300 isotopes = 120 Giga-bytes per point)

Core-loading optimization methods

- Modern computing has made single-cycle rigorous optimization realizable:
 - PWR:
 - 10,000s of 3-D cycle depletions overnight
 - Stochastic algorithms have been very successful
 - BWR
 - 1000s of 3-D cycle depletions overnight
 - Needs:
 - BWR: simultaneous control rod pattern/fuel loading
 - Simultaneous optimization of bundle design and core loading
 - Multi-cycle optimization methods
 - Better understanding of "objective functions"

Current 3-D transient methods

- Needs for nodal method improvement:
 - Overcome same accuracy limitations as steady-state models
 - Improve cross sections modeling over the cold-to-hot range
 - Improve thermal-hydraulic models
- Needs for coupled nodal and systems-hydraulics codes:
 - More efficient numerics for massive numbers of t-h nodes
 - More accurate information on local thermal-hydraulic conditions
 - Improved mechanistic models for spacers, dryout, DNBR, etc.
 - Improved 3-D vessel components modeling: vessel mixing, cross flow, bypass flow channels, etc.
- Needs for 3-D fine-mesh transient methods:
 - Same thermal hydraulic limitations as nodal methods

Needs for better plant monitoring

- Much LWR analysis is necessitated by lack of detailed knowledge of in-core power distributions (e.g. PWR "flyspeck analysis")
- What about licensing new methods for monitoring plant operations?
 - Need reliable fixed in-core detection system
 - Need real-time detailed modeling of core power distributions,
 DNBR margins
 - Better tools for operator support

Is the grass greener on the other side?

- Much of the need for complex methods for LWRs is driven by the difficulties caused by high pressure water coolant
- Can new reactor concepts (NGNP, GEN IV) <u>avoid</u>:
 - The licensing requirements for accurate/complex computations?
 - The need for plant and cycle-specific analysis?
 - Introduction of new materials and chemistry problems?
 - Economic pressure to operate closer to physical limits?

Summary

- All reactor physics problems have not been solved!
- Advances in computational hardware will not eliminate the need for new deterministic reactor physics tools.
- New reactor types may well stress different areas of reactor physics than do LWRs.
- New reactor physics projects are needed to fully educate the coming generation of reactor physicists.
- <u>Completion</u> of new reactor projects is required to keep reactor physics a relevant and vibrant discipline.